

Welcome to aio-sf-streaming’s documentation!

[image: Last release]
 [https://badge.fury.io/py/aio-sf-streaming][image: Build]
 [https://travis-ci.org/papernest-public/aio_sf_streaming][image: MIT license]
 [https://opensource.org/licenses/MIT]aio-sf-streaming is a simple Python 3.6 asyncio library allowing to connect
and receive live notifications from Salesforce. This library is provided to
you by papernest [http://www.papernest.com].

See The Force.com streaming API developer guide [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/intro_stream.htm]
for more information about the different uses cases and how configure your
Salesforce organization.

Simple example

import asyncio
from aio_sf_streaming import SimpleSalesforceStreaming

async def print_event():
 # Create client and connect
 async with SimpleSalesforceStreaming(
 username='my-username',
 password='my-password',
 client_id='my-client-id',
 client_secret='my-client-secret') as client:
 # Subscribe to some push topics
 await client.subscribe('/topic/Foo')
 await client.subscribe('/topic/Bar')
 # Print received message infinitely
 async for message in client.events():
 channel = message['channel']
 print(f"Message received on {channel} : {message}")

loop = asyncio.get_event_loop()
loop.run_until_complete(print_event())

Main features

	asyncio [https://docs.python.org/3/library/asyncio.html] compatible library

	Authentication with username/password or refresh token

	Subscribe to push topics and custom events

	Receive events pushed by Salesforce

	Auto-reconnect after too many time of inactivity

	Replay support: replay events missed while your client is disconnected (see
Force.com documentation [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/using_streaming_api_stateless.htm]
for more information).

aio-sf-streaming only support Python 3.6 for now.

User Guide

	Introduction
	License

	Quickstart
	Code organization

	Asyncronous and Asyncio

	Salesforce connection

	Subscribe to events

	Receive events

	Replay support

Reference Documentation

	Developer Interface
	Code organization

	Main Interface

	Base class

	Connectors

	Mixins

	Release notes

Introduction

aio-sf-streaming is a simple client library allowing to connect to the
Force.com Streaming API [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/intro_stream.htm]
and receive push event from Salesforce.

Salesforce can push two kind of events:

	PushTopics [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/working_with_pushtopics.htm]
allow you to monitor object and receive notification when the provided SOQL
query match after an object creation, update or deletion.

	Generic streaming [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/generic_streaming_intro.htm#generic_streaming_intro]
allow to create custom events not linked to Saleforce object. Apex or API call
allow you to trigger the event and receive notification in your streaming
client.

aio-sf-streaming allow you to connect to Salesforce, subscribe for some events
and receive event when a change in a PushTopics is detected or when a generic
streaming event is trigged.

License

aio-sf-streaming was created at papernest [https://www.papernest.com] and
is distribued under the MIT license.

The MIT License

Copyright (c) 2018 papernest. http://www.papernest.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Quickstart

Code organization

aio-sf-streaming is designed in a modular way:

	BaseSalesforceStreaming is the base class of the package. It
implement the main logic of the streaming API flow. It is an abstract class,
you can not use it directly, the class lake of connection capability. You
must use one of the connector implementation.

	Connectors add connection capabilities to
BaseSalesforceStreaming allowing to connect to Salesforce.
PasswordSalesforceStreaming allow to connect on Salesforce with
password flow [https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_understanding_username_password_oauth_flow.htm].
RefreshTokenSalesforceStreaming allow to connect on Salesforce with
refresh token flow [https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_understanding_refresh_token_oauth.htm].

	Mixins are provided and can be added to concrete implementation to
provide additional capabilities like replay support [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/using_streaming_api_durability.htm]
or use the provided timeout advice. This functionalities can be added
by sub-classing a connector and add mixin to your concrete implementation.

	Helper class like SimpleSalesforceStreaming simplify implementation
with an “all-in-one” class implementation.

Asyncronous and Asyncio

Salesforce connection

BaseSalesforceStreaming allow you to connect with user name and
password of the user and client id and secret from the connected app [https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_defining_remote_access_applications.htm].

Constructor does not establish any connection, you needs to call
BaseSalesforceStreaming.start() to connect to Salesforce and
start Bayeux/CometD protocol. Call :BaseSalesforceStreaming.stop()
to disconnect and stop connection.

client = SimpleSalesforceStreaming(
 username='username',
 password='password',
 client_id='client_id',
 client_secret='client_secret')
await client.start()
process events
await client.stop()

Most of the time, you should not call theses methods directly, you should use
the asynchronous context manager interface that will call all of these for you:

async with SimpleSalesforceStreaming(
 username='username',
 password='password',
 client_id='client_id',
 client_secret='client_secret') as client:
 # process events

Subscribe to events

Two methods BaseSalesforceStreaming.subscribe() and BaseSalesforceStreaming.unsubscribe()
allow you to start receiving new events from a push topic or a generic streaming event
and stop when you does not want to receive event anymore.

async with SimpleSalesforceStreaming(**credentials) as client:
 # Subscribe to push topic
 await client.subscribe('/topic/Foo')
 # Subscribe to generic event
 await client.subscribe('/u/MyEvent')

 # Process events

 # Unsubscribe from push topic
 await client.unsubscribe('/topic/Foo')
 # Unsubscribe from generic event
 await client.unsubscribe('/u/MyEvent')

You can subscribe and unsubscribe at any moment and on other coroutine as
soon as the connection is established. You can even start to process without
waiting the response:

async def process(loop):
 async with SimpleSalesforceStreaming(**credentials, loop=loop) as client:
 loop.create_task(client.subscribe('/topic/Foo'))
 loop.create_task(client.subscribe('/topic/Bar'))

 # Process events

loop = asyncio.get_event_loop()
loop.run_until_complete(process(loop))

Receive events

BaseSalesforceStreaming.messages() and BaseSalesforceStreaming.events()
are used to iterate over events when their are received. The main difference is
that BaseSalesforceStreaming.messages() provide all events, whereas
BaseSalesforceStreaming.events() filter internal messages and provide
only the events for channel you subscribed.

Both methods are asynchronous generator and should be iterate with async for:

async with SimpleSalesforceStreaming(**credentials) as client:
 await client.subscribe('/topic/Foo')
 await client.subscribe('/topic/Bar')

 async for event in client.events():
 channel = event['channel']
 print(f"Received an event from {channel} : {event}")

Warning

Linked to the underlying protocol, long-pooling based, the client
should reconnect as soon as possible. Practically, client have 40
seconds to reconnect. If your processing take a longer time, a new
connection should be made. You should avoid doing long processing
between each iteration or launch this processing into a background
task.

The processing loop is infinite by default. Inside the loop, you can stop
easily with a break:

async with SimpleSalesforceStreaming(**credentials) as client:
 await client.subscribe('/topic/Foo')
 await client.subscribe('/topic/Bar')

 async for event in client.events():
 channel = event['channel']
 if channel == '/topic/Foo':
 break
 else:
 print(event)

Outside the main loop, you can call BaseSalesforceStreaming.ask_stop()
to stop the loop as soon as is possible, even if your loop is waiting for a new
message. Please note that, due to the underlying protocol, this can take some
time to really happen (the code must wait a timeout from the server, can be as
long as 2min).

Replay support

ReplayMixin add support of 24 hours events replay [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/using_streaming_api_durability.htm].
Each event is associated with an unique id by channel. To support replay, you
must override two methods: ReplayMixin.store_replay_id() and ReplayMixin.get_last_replay_id().

ReplayMixin.store_replay_id() is called for each received event. The
method is called with three arguments:

	the channel,

	the replay id,

	the object creation time (the string provided by SF).

For each channel, this function should store the replay id of the last created
object.

ReplayMixin.get_last_replay_id() will be called to retrieve the last
replay id for a specific channel. In addition of a specific id, this function
can return two special values from the ReplayType enum to replay
all available events (24 hours history) or only new events after subscription.

The next example will store replay id in memory. In real world application you
should store this id in a persistent way:

class MyClient(SimpleSalesforceStreaming):
 def __init__(*args, **kwargs):
 self.replays = {}
 super().__init__(*args, **kwargs)

 async def store_replay_id(self, channel, replay_id, creation_time):
 # we does not want to store the replay id if a most recent one is
 # already stored
 last_storage = self.replays.get(channel, None)
 creation_time = parse_time(creation_time) # Custom function to implement
 if last_storage and last_storage[0] > creation_time:
 return
 self.replays[channel] = (creation_time, replay_id)

 async def get_last_replay_id(self, channel):
 # Retrieve last replay
 last_storage = self.replays.get(channel, None)
 # If we have not any stored replay id, we can either replay all
 # events or only subscribe to new ones.
 if not last_storage:
 return ReplayType.NEW_EVENTS
 return last_storage[1]

Developer Interface

This part of the documentation covers all the interfaces of aio_sf_streaming.

Code organization

The package is separated in 5 mains modules:

	High-level classes and helpers are provided to have a quickly functional
client. See Main Interface section.

	The Base class section describe the low-level base class that
implement the main client logic.

	To authenticate on Salesforce, you must use one connector that add
authentication capability to BaseSalesforceStreaming. See
Connectors section for a list of available connectors.

	Finally, Mixins extend BaseSalesforceStreaming capabilities and
can be added easily as opt-in option by sub classing.

Main Interface

	
class aio_sf_streaming.SimpleSalesforceStreaming(username, password, client_id, client_secret, *, sandbox=False, version='42.0', loop=None, connector=None, login_connector=None, retry_sub_duration=0.1, retry_factor=1.0, retry_max_duration=30.0, retry_max_count=20)[source]

	A simple helper class providing all-in-one functionalities.

	Parameters

	
	username (str) – User login name

	password (str) – User password

	client_id (str) – OAuth2 client Id

	client_secret (str) – Oauth2 client secret

	sandbox (bool) – If True, the connexion will be made on a sandbox,
from https://test.salesforce.com instead of the main login
route at https://login.salesforce.com.

	version (str) – The API version to use. For example '42.0'.

	loop (Optional[AbstractEventLoop]) – Asyncio loop used

	connector (Optional[BaseConnector]) – aiohttp connector used for main session. Mainly used
for test purpose.

	login_connector (Optional[BaseConnector]) – aiohttp connector used during connection. Mainly
used for test purpose.

	retry_sub_duration (float) – Duration between subscribe retry if server is
too buzy.

	retry_factor (float) – Factor amplification between each successive retry

	retry_max_duration (float) – Maximum value of the retry duration

	retry_max_count (int) – Maximum count of retry, after this count is reach,
response or exception are propagated.

Usage example:

class MyClient(SimpleSalesforceStreaming):
 def __init__(self):
 self.replays = []
 super().__init__(username='my-username',
 password='my-password',
 client_id='my-client-id',
 client_secret='my-client-secret')

 async def store_replay_id(self, channel, replay_id, creation_time):
 # We only store replay id without any use
 self.replays.append((channel, replay_id, creation_time))

 async def get_last_replay_id(self, channel):
 # We ask for only use new events
 return EventType.NEW_EVENTS

async def print_events():
 async with MyClient() as client:
 await client.subscribe('/topic/Foo')
 async for message in client.events():
 channel = message['channel']
 print(f"Message received on {channel} : {message}")

loop = asyncio.get_event_loop()
loop.run_until_complete(print_event())

SimpleSalesforceStreaming inherit all members from their base
class. Only main one, for external use, are listed here.

	
coroutine start(self)

	See BaseSalesforceStreaming.start()

	Return type

	None

	
coroutine subscribe(self, channel)

	See BaseSalesforceStreaming.subscribe()

	Return type

	List[Dict[str, Any]]

	
async-for messages(self)

	See BaseSalesforceStreaming.messages()

	Return type

	Dict[str, Any]

	
async-for events(self)

	Asynchronous generator that fetch new events and return one as soon
as one is available:

async for message in client.events():
 channel = message['channel']
 print(channel, ':', message)

This method is different from BaseSalesforceStreaming.messages()
because it filter messages and provide only those related to the
channels you subscribed.

	Return type

	Dict[str, Any]

	
coroutine store_replay_id(self, channel, replay_id, creation_time)

	Callback called to store a replay id. You should override this method
to implement your custom logic.

	Parameters

	
	channel (str) – Channel name

	replay_id (int) – replay id to store

	creation_time (str) – Creation time. You should store only the last
created object but you can not know if you received event in order
without this. This value is the string provided by SF.

	Return type

	None

	
coroutine get_last_replay_id(self, channel)

	Callback called to retrieve a replay id. You should override this method
to implement your custom logic.

	Parameters

	channel (str) – Channel name

	Return type

	Union[ReplayType, int]

	
coroutine ask_stop(self)

	Ask client to stop receiving event:

async for event in client.events():
 ...
 if ...:
 await client.ask_stop()

This call will eventually stop
BaseSalesforceStreaming.messages() and
BaseSalesforceStreaming.events() async generator but this can
take some time if not called inside the loop body: the generator will
wait a timeout response from Salesforce server.

	Return type

	None

	
coroutine unsubscribe(self, channel)

	See BaseSalesforceStreaming.unsubscribe()

	Return type

	List[Dict[str, Any]]

	
coroutine stop(self)

	See BaseSalesforceStreaming.stop()

	Return type

	None

	
class aio_sf_streaming.SimpleRefreshTokenSalesforceStreaming(refresh_token, client_id, client_secret, *, sandbox=False, version='42.0', loop=None, connector=None, login_connector=None, retry_sub_duration=0.1, retry_factor=1.0, retry_max_duration=30.0, retry_max_count=20)[source]

	A simple helper class providing all-in-one functionalities.

	Parameters

	
	refresh_token (str) – Refresh token

	client_id (str) – OAuth2 client Id

	client_secret (str) – Oauth2 client secret

	sandbox (bool) – If True, the connexion will be made on a sandbox,
from https://test.salesforce.com instead of the main login
route at https://login.salesforce.com.

	version (str) – The API version to use. For example '42.0'.

	loop (Optional[AbstractEventLoop]) – Asyncio loop used

	connector (Optional[BaseConnector]) – aiohttp connector used for main session. Mainly used
for test purpose.

	login_connector (Optional[BaseConnector]) – aiohttp connector used during connection. Mainly
used for test purpose.

	retry_sub_duration (float) – Duration between subscribe retry if server is
too buzy.

	retry_factor (float) – Factor amplification between each successive retry

	retry_max_duration (float) – Maximum value of the retry duration

	retry_max_count (int) – Maximum count of retry, after this count is reach,
response or exception are propagated.

Usage example:

class MyClient(SimpleRefreshTokenSalesforceStreaming):
 def __init__(self):
 self.replays = []
 super().__init__(refresh_token='refresh_token',
 client_id='my-client-id',
 client_secret='my-client-secret')

 async def store_replay_id(self, channel, replay_id, creation_time):
 # We only store replay id without any use
 self.replays.append((channel, replay_id, creation_time))

 async def get_last_replay_id(self, channel):
 # We ask for only use new events
 return EventType.NEW_EVENTS

async def print_events():
 async with MyClient() as client:
 await client.subscribe('/topic/Foo')
 async for message in client.events():
 channel = message['channel']
 print(f"Message received on {channel} : {message}")

loop = asyncio.get_event_loop()
loop.run_until_complete(print_event())

SimpleSalesforceStreaming inherit all members from their base
class. Only main one, for external use, are listed here. See
SimpleRefreshTokenSalesforceStreaming for method description.

Base class

	
class aio_sf_streaming.BaseSalesforceStreaming(*, sandbox=False, version='42.0', loop=None, connector=None)[source]

	Base low-level aio-sf-streaming class.

Can not be used directly: must be sub-classed with at least one connector
implementation. The class provide basic functionalities. Additional
functionalities can be added with provided mixins.

The main logic is implemented here but you should not use it directly.

	Parameters

	
	sandbox (bool) – If True, the connexion will be made on a sandbox,
from https://test.salesforce.com instead of the main login
route at https://login.salesforce.com.

	version (str) – The API version to use. For example '42.0'.

	loop (Optional[AbstractEventLoop]) – Asyncio loop used

	connector (Optional[BaseConnector]) – aiohttp connector used for main session. Mainly used
for test purpose.

This class supports the context manager protocol for self closing.

All main members are coroutine, even if default implementation does do any
asynchronous call. With this convention, sub classes and mixins can easily
override this members and do complex call.

See SimpleSalesforceStreaming for an usage example.

High level api

	
coroutine start(self)[source]

	Connect to Salesforce, authenticate and init CometD connexion.

A best practice is to use async context manager interface that will
call this method directly.

	Return type

	None

	
coroutine subscribe(self, channel)[source]

	Subscribe to a channel. Can be used directly:

await client.subscribe('/topic/Foo')

This method, and the underlying protocol, are safe to be started as
an background task:

loop.create_task(client.subscribe('/topic/Foo'))

	Return type

	List[Dict[str, Any]]

	
async-for messages(self)[source]

	Asynchronous generator that fetch new messages and return one as soon
as one is available:

async for message in client.messages():
 channel = message['channel']
 print(channel, ':', message)

This method iterate over all messages, even on internal/meta one.
If you want to only iterate over messages from channels you subscribed,
you should use BaseSalesforceStreaming.events().

Warning

Linked to the underlying protocol, long-pooling based, the client
should reconnect as soon as possible. Practically, client have 40
seconds to reconnect. If your processing take a longer time, a new
connection should be made. You should avoid doing long processing
between each iteration or launch this processing into a background
task.

	Return type

	Dict[str, Any]

	
async-for events(self)[source]

	Asynchronous generator that fetch new events and return one as soon
as one is available:

async for message in client.events():
 channel = message['channel']
 print(channel, ':', message)

This method is different from BaseSalesforceStreaming.messages()
because it filter messages and provide only those related to the
channels you subscribed.

	Return type

	Dict[str, Any]

	
coroutine ask_stop(self)[source]

	Ask client to stop receiving event:

async for event in client.events():
 ...
 if ...:
 await client.ask_stop()

This call will eventually stop
BaseSalesforceStreaming.messages() and
BaseSalesforceStreaming.events() async generator but this can
take some time if not called inside the loop body: the generator will
wait a timeout response from Salesforce server.

	Return type

	None

	
coroutine unsubscribe(self, channel)[source]

	Unsubscribe to a channel. Can be used directly:

await client.unsubscribe('/topic/Foo')

This method, and the underlying protocol, are safe to be started as
an background task:

loop.create_task(client.unsubscribe('/topic/Foo'))

	Return type

	List[Dict[str, Any]]

	
coroutine stop(self)[source]

	Disconnect to Salesforce and close underlying connection.

A best practice is to use async context manager interface that will
call this method directly.

	Return type

	None

Connection logic

	
token_url

	The url that should be used to fetch an access token.

	Return type

	str

	
coroutine fetch_token(self)[source]

	Abstract coroutine method of connector that must provide an access
token and the instance url linked.

	Return type

	Tuple[str, str]

	
coroutine create_connected_session(self)[source]

	This coroutine create an aiohttp.ClientSession using fetched token

	Return type

	ClientSession

	
coroutine close_session(self)[source]

	Close the underlying aiohttp.ClientSession connection

	Return type

	None

Bayeux/CometD logic layer

	
end_point

	Cometd endpoint

	Return type

	str

	
coroutine get_handshake_payload(self)[source]

	Provide the handshake payload

	Return type

	Dict[str, Any]

	
coroutine get_subscribe_payload(self, channel)[source]

	Provide the subscription payload for a specific channel

	Return type

	Dict[str, Any]

	
coroutine get_unsubscribe_payload(self, channel)[source]

	Provide the unsubscription payload for a specific channel

	Return type

	Dict[str, Any]

	
coroutine send(self, data)[source]

	Send data to CometD server when the connection is established:

Manually disconnect
await client.send({'channel': '/meta/disconnect'})

	Return type

	Union[Dict[str, Any], List[Dict[str, Any]]]

	
coroutine handshake(self)[source]

	Coroutine that perform an handshake (mandatory before any other action)

	Return type

	List[Dict[str, Any]]

	
coroutine disconnect(self)[source]

	Disconnect from the SF streaming server

	Return type

	List[Dict[str, Any]]

I/O layer helpers

	
coroutine get(self, sub_url, **kwargs)[source]

	Perform a simple json get request from an internal url:

response = await.client.get('/myendpoint/')

	Return type

	Union[Dict[str, Any], List[Dict[str, Any]]]

	
coroutine post(self, sub_url, **kwargs)[source]

	Perform a simple json post request from an internal url:

response = await.client.post('/myendpoint/', json={'data': 'foo'})

	Return type

	Union[Dict[str, Any], List[Dict[str, Any]]]

	
coroutine request(self, method, sub_url, **kwargs)[source]

	Perform a simple json request from an internal url

	Return type

	Union[Dict[str, Any], List[Dict[str, Any]]]

Other attributes

	
loop

	Running event loop

	Return type

	AbstractEventLoop

Connectors

	
class aio_sf_streaming.BaseConnector(*, client_id=None, client_secret=None, login_connector=None, **kwargs)[source]

	Base class for all sf connectors.

	Parameters

	
	client_id (Optional[str]) – OAuth2 client Id (mandatory)

	client_secret (Optional[str]) – Oauth2 client secret (mandatory)

	login_connector (Optional[BaseConnector]) – aiohttp connector used during connection.
Mainly used for test purpose.

See BaseSalesforceStreaming for other keywords arguments.

	
class aio_sf_streaming.PasswordSalesforceStreaming(*, username=None, password=None, **kwargs)[source]

	Create a SF streaming manager with password flow connection.

Main arguments are connection credentials:

	Parameters

	
	username (Optional[str]) – User login name

	password (Optional[str]) – User password

See BaseConnector for other keywords arguments.

	
class aio_sf_streaming.RefreshTokenSalesforceStreaming(*, refresh_token=None, **kwargs)[source]

	Create a SF streaming manager with password refresh token connection.

Main arguments are connection credentials:

	Parameters

	refresh_token (Optional[str]) – Refresh token

See BaseConnector for other keywords arguments.

Mixins

	
class aio_sf_streaming.AllMixin(*args, **kwargs)[source]

	Helper class to add all mixin with one class

	
class aio_sf_streaming.TimeoutAdviceMixin[source]

	Simple mixin that automatically set timeout setting according to SF
advice, if provided.

	
class aio_sf_streaming.ReplayType(value)[source]

	Enumeration with special replay values

	
ALL_EVENTS = -2

	Replay all events available.

	
NEW_EVENTS = -1

	No replay, retrieve only new events.

	
class aio_sf_streaming.ReplayMixin[source]

	Mixing adding replay support to the streaming client.

This mixin is not enough, you must implement ReplayMixin.store_replay_id() and
:py:func:`ReplayMixin.get_last_replay_id in a subclass in order to have a working replay.

	
coroutine get_last_replay_id(self, channel)[source]

	Callback called to retrieve a replay id. You should override this method
to implement your custom logic.

	Parameters

	channel (str) – Channel name

	Return type

	Union[ReplayType, int]

	
coroutine store_replay_id(self, channel, replay_id, creation_time)[source]

	Callback called to store a replay id. You should override this method
to implement your custom logic.

	Parameters

	
	channel (str) – Channel name

	replay_id (int) – replay id to store

	creation_time (str) – Creation time. You should store only the last
created object but you can not know if you received event in order
without this. This value is the string provided by SF.

	Return type

	None

	
class aio_sf_streaming.AutoVersionMixin[source]

	Simple mixin that fetch last api version before connect.

	
class aio_sf_streaming.AutoReconnectMixin(*args, **kwargs)[source]

	Mixin that will automatically reconnect when asked by Salesforce

	
class aio_sf_streaming.ReSubscribeMixin(retry_sub_duration=0.1, retry_factor=1.0, retry_max_duration=30.0, retry_max_count=20, **kwargs)[source]

	Mixin that handle subscription error, will try again after a short delay

	Parameters

	
	retry_sub_duration (float) – Duration between subscribe retry if server is
too buzy (initial value).

	retry_factor (float) – Factor amplification between each successive retry

	retry_max_duration (float) – Maximum value of the retry duration

	retry_max_count (int) – Maximum count of retry, after this count is reach,
response or exception are propagated.

	
coroutine should_retry_on_error_response(self, channel, response)[source]

	Callback called to process a response with and error message.
Return a boolean if we must retry. If False is returned, the response will be
returned to caller.

By-default, retry on known ‘server unavailable’ response.

	Parameters

	
	channel (str) – Channel name

	response (Dict[str, Any]) – The response received

	Return type

	bool

	
coroutine should_retry_on_exception(self, channel, exception)[source]

	Callback called to process an exception raised during subscription.
Return a boolean if we must retry. If False is returned, the exception will be
propagated to caller.

By-default, do return always False.

	Parameters

	
	channel (str) – Channel name

	exception (Exception) – The exception raised

	Return type

	bool

Release notes

	
	0.3.0
	
	Remove date-time parsing of the replay mixin.

	Allow client to customize ReSubscribeMixin retry conditions.

	Allow client to customize ReSubscribeMixin retry duration evolution.

	
	0.2.0
	Minor release : Add refresh token authentication

	
	0.1.1
	Minor release : Add documentation and start adding typing annotations.

	
	0.1.0
	Initial release : Basic Salesforce streaming client with password flow
support.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 aio_sf_streaming	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	
 aio_sf_streaming

 	module, [1]

 	ALL_EVENTS (aio_sf_streaming.ReplayType attribute)

 	AllMixin (class in aio_sf_streaming)

 	
 	ask_stop() (aio_sf_streaming.BaseSalesforceStreaming method)

 	(aio_sf_streaming.SimpleSalesforceStreaming method)

 	AutoReconnectMixin (class in aio_sf_streaming)

 	AutoVersionMixin (class in aio_sf_streaming)

B

 	
 	BaseConnector (class in aio_sf_streaming)

 	
 	BaseSalesforceStreaming (class in aio_sf_streaming)

C

 	
 	close_session() (aio_sf_streaming.BaseSalesforceStreaming method)

 	
 	create_connected_session() (aio_sf_streaming.BaseSalesforceStreaming method)

D

 	
 	disconnect() (aio_sf_streaming.BaseSalesforceStreaming method)

E

 	
 	end_point (aio_sf_streaming.BaseSalesforceStreaming attribute)

 	
 	events() (aio_sf_streaming.BaseSalesforceStreaming method)

 	(aio_sf_streaming.SimpleSalesforceStreaming method)

F

 	
 	fetch_token() (aio_sf_streaming.BaseSalesforceStreaming method)

G

 	
 	get() (aio_sf_streaming.BaseSalesforceStreaming method)

 	get_handshake_payload() (aio_sf_streaming.BaseSalesforceStreaming method)

 	get_last_replay_id() (aio_sf_streaming.ReplayMixin method)

 	(aio_sf_streaming.SimpleSalesforceStreaming method)

 	
 	get_subscribe_payload() (aio_sf_streaming.BaseSalesforceStreaming method)

 	get_unsubscribe_payload() (aio_sf_streaming.BaseSalesforceStreaming method)

H

 	
 	handshake() (aio_sf_streaming.BaseSalesforceStreaming method)

L

 	
 	loop (aio_sf_streaming.BaseSalesforceStreaming attribute)

M

 	
 	messages() (aio_sf_streaming.BaseSalesforceStreaming method)

 	(aio_sf_streaming.SimpleSalesforceStreaming method)

 	
 	
 module

 	aio_sf_streaming, [1]

N

 	
 	NEW_EVENTS (aio_sf_streaming.ReplayType attribute)

P

 	
 	PasswordSalesforceStreaming (class in aio_sf_streaming)

 	
 	post() (aio_sf_streaming.BaseSalesforceStreaming method)

R

 	
 	RefreshTokenSalesforceStreaming (class in aio_sf_streaming)

 	ReplayMixin (class in aio_sf_streaming)

 	
 	ReplayType (class in aio_sf_streaming)

 	request() (aio_sf_streaming.BaseSalesforceStreaming method)

 	ReSubscribeMixin (class in aio_sf_streaming)

S

 	
 	send() (aio_sf_streaming.BaseSalesforceStreaming method)

 	should_retry_on_error_response() (aio_sf_streaming.ReSubscribeMixin method)

 	should_retry_on_exception() (aio_sf_streaming.ReSubscribeMixin method)

 	SimpleRefreshTokenSalesforceStreaming (class in aio_sf_streaming)

 	SimpleSalesforceStreaming (class in aio_sf_streaming)

 	start() (aio_sf_streaming.BaseSalesforceStreaming method)

 	(aio_sf_streaming.SimpleSalesforceStreaming method)

 	
 	stop() (aio_sf_streaming.BaseSalesforceStreaming method)

 	(aio_sf_streaming.SimpleSalesforceStreaming method)

 	store_replay_id() (aio_sf_streaming.ReplayMixin method)

 	(aio_sf_streaming.SimpleSalesforceStreaming method)

 	subscribe() (aio_sf_streaming.BaseSalesforceStreaming method)

 	(aio_sf_streaming.SimpleSalesforceStreaming method)

T

 	
 	TimeoutAdviceMixin (class in aio_sf_streaming)

 	
 	token_url (aio_sf_streaming.BaseSalesforceStreaming attribute)

U

 	
 	unsubscribe() (aio_sf_streaming.BaseSalesforceStreaming method)

 	(aio_sf_streaming.SimpleSalesforceStreaming method)

 Source code for aio_sf_streaming

"""
aio_sf_streaming
~~~~~~~~~~~~~~~~

aio_sf_streaming is a simple asyncio Salesforce Streaming API client for
Python 3.6+
"""
import asyncio
import aiohttp
from .core import BaseSalesforceStreaming
from .connectors import (
    BaseConnector,
    PasswordSalesforceStreaming,
    RefreshTokenSalesforceStreaming,
)
from .mixins import (
    TimeoutAdviceMixin,
    AutoVersionMixin,
    ReplayMixin,
    ReplayType,
    AutoReconnectMixin,
    ReSubscribeMixin,
    AllMixin,
)
from .__version__ import __version__


[docs]class SimpleSalesforceStreaming(AllMixin, PasswordSalesforceStreaming):  # Password flow
    """
    A simple helper class providing all-in-one functionalities.

    :param username: User login name
    :param password: User password
    :param client_id: OAuth2 client Id
    :param client_secret: Oauth2 client secret
    :param sandbox: If ``True``, the connexion will be made on a sandbox,
        from ``https://test.salesforce.com`` instead of the main login
        route at ``https://login.salesforce.com``.
    :param version: The API version to use. For example ``'42.0'``.
    :param loop: Asyncio loop used
    :param connector: ``aiohttp`` connector used for main session. Mainly used
        for test purpose.
    :param login_connector: ``aiohttp`` connector used during connection. Mainly
        used for test purpose.
    :param retry_sub_duration: Duration between subscribe retry if server is
        too buzy.
    :param retry_factor: Factor amplification between each successive retry
    :param retry_max_duration: Maximum value of the retry duration
    :param retry_max_count: Maximum count of retry, after this count is reach,
        response or exception are propagated.

    **Usage example**::

        class MyClient(SimpleSalesforceStreaming):
            def __init__(self):
                self.replays = []
                super().__init__(username='my-username',
                                 password='my-password',
                                 client_id='my-client-id',
                                 client_secret='my-client-secret')

            async def store_replay_id(self, channel, replay_id, creation_time):
                # We only store replay id without any use
                self.replays.append((channel, replay_id, creation_time))

            async def get_last_replay_id(self, channel):
                # We ask for only use new events
                return EventType.NEW_EVENTS

        async def print_events():
            async with MyClient() as client:
                await client.subscribe('/topic/Foo')
                async for message in client.events():
                    channel = message['channel']
                    print(f"Message received on {channel} : {message}")

        loop = asyncio.get_event_loop()
        loop.run_until_complete(print_event())

    """

    def __init__(
        self,
        username: str,
        password: str,
        client_id: str,
        client_secret: str,
        *,
        sandbox: bool = False,
        version: str = "42.0",
        loop: asyncio.AbstractEventLoop = None,
        connector: aiohttp.BaseConnector = None,
        login_connector: aiohttp.BaseConnector = None,
        retry_sub_duration: float = 0.1,
        retry_factor: float = 1.,
        retry_max_duration: float = 30.,
        retry_max_count: int = 20,
    ) -> None:
        super().__init__(
            username=username,
            password=password,
            client_id=client_id,
            client_secret=client_secret,
            sandbox=sandbox,
            version=version,
            loop=loop,
            connector=connector,
            login_connector=login_connector,
            retry_sub_duration=retry_sub_duration,
            retry_factor=retry_factor,
            retry_max_duration=retry_max_duration,
            retry_max_count=retry_max_count,
        )



[docs]class SimpleRefreshTokenSalesforceStreaming(
    AllMixin, RefreshTokenSalesforceStreaming
):  # Refresh token flow
    """
    A simple helper class providing all-in-one functionalities.

    :param refresh_token: Refresh token
    :param client_id: OAuth2 client Id
    :param client_secret: Oauth2 client secret
    :param sandbox: If ``True``, the connexion will be made on a sandbox,
        from ``https://test.salesforce.com`` instead of the main login
        route at ``https://login.salesforce.com``.
    :param version: The API version to use. For example ``'42.0'``.
    :param loop: Asyncio loop used
    :param connector: ``aiohttp`` connector used for main session. Mainly used
        for test purpose.
    :param login_connector: ``aiohttp`` connector used during connection. Mainly
        used for test purpose.
    :param retry_sub_duration: Duration between subscribe retry if server is
        too buzy.
    :param retry_factor: Factor amplification between each successive retry
    :param retry_max_duration: Maximum value of the retry duration
    :param retry_max_count: Maximum count of retry, after this count is reach,
        response or exception are propagated.

    **Usage example**::

        class MyClient(SimpleRefreshTokenSalesforceStreaming):
            def __init__(self):
                self.replays = []
                super().__init__(refresh_token='refresh_token',
                                 client_id='my-client-id',
                                 client_secret='my-client-secret')

            async def store_replay_id(self, channel, replay_id, creation_time):
                # We only store replay id without any use
                self.replays.append((channel, replay_id, creation_time))

            async def get_last_replay_id(self, channel):
                # We ask for only use new events
                return EventType.NEW_EVENTS

        async def print_events():
            async with MyClient() as client:
                await client.subscribe('/topic/Foo')
                async for message in client.events():
                    channel = message['channel']
                    print(f"Message received on {channel} : {message}")

        loop = asyncio.get_event_loop()
        loop.run_until_complete(print_event())

    """

    def __init__(
        self,
        refresh_token: str,
        client_id: str,
        client_secret: str,
        *,
        sandbox: bool = False,
        version: str = "42.0",
        loop: asyncio.AbstractEventLoop = None,
        connector: aiohttp.BaseConnector = None,
        login_connector: aiohttp.BaseConnector = None,
        retry_sub_duration: float = 0.1,
        retry_factor: float = 1.,
        retry_max_duration: float = 30.,
        retry_max_count: int = 20,
    ) -> None:
        super().__init__(
            refresh_token=refresh_token,
            client_id=client_id,
            client_secret=client_secret,
            sandbox=sandbox,
            version=version,
            loop=loop,
            connector=connector,
            login_connector=login_connector,
            retry_sub_duration=retry_sub_duration,
            retry_factor=retry_factor,
            retry_max_duration=retry_max_duration,
            retry_max_count=retry_max_count,
        )





            

          

      

      

    

  

    
      
          
            
  All modules for which code is available

	aio_sf_streaming

	aio_sf_streaming.connectors

	aio_sf_streaming.core

	aio_sf_streaming.mixins





            

          

      

      

    

  

    
      
          
            
  Source code for aio_sf_streaming.connectors

"""
Connectors module: Provide authentication implementation
"""

from typing import Tuple

import aiohttp

from .core import BaseSalesforceStreaming


[docs]class BaseConnector(BaseSalesforceStreaming):
    """
    Base class for all sf connectors.

    :param client_id: OAuth2 client Id (mandatory)
    :param client_secret: Oauth2 client secret (mandatory)
    :param login_connector: aiohttp connector used during connection.
        Mainly used for test purpose.

    See :class:`.BaseSalesforceStreaming` for other keywords arguments.
    """

    def __init__(
        self,
        *,
        client_id: str = None,
        client_secret: str = None,
        login_connector: aiohttp.BaseConnector = None,
        **kwargs
    ):
        if any(v is None for v in (client_id, client_secret)):
            raise TypeError("All credentials arguments are mandatory")

        self.login_connector = login_connector
        self.credentials = {"client_id": client_id, "client_secret": client_secret}
        super().__init__(**kwargs)

    async def fetch_token(self) -> Tuple[str, str]:
        # use a temporary session only to fetch token because client session
        # does not seems to allow update default headers on a already created
        # session
        async with aiohttp.ClientSession(
            connector=self.login_connector, headers=self.base_header, loop=self.loop
        ) as session:
            async with session.post(self.token_url, data=self.credentials) as resp:
                data = await resp.json()

        assert data["token_type"] == "Bearer"
        instance_url = data["instance_url"]
        access_token = data["access_token"]

        return access_token, instance_url



[docs]class PasswordSalesforceStreaming(BaseConnector):
    """
    Create a SF streaming manager with password flow connection.

    Main arguments are connection credentials:

    :param username: User login name
    :param password: User password

    See :class:`.BaseConnector` for other keywords arguments.
    """

    def __init__(self, *, username: str = None, password: str = None, **kwargs):
        if any(v is None for v in (username, password)):
            raise TypeError("All credentials arguments are mandatory")

        super().__init__(**kwargs)
        # Credentials used to fetch access token
        self.credentials.update(
            {"grant_type": "password", "username": username, "password": password}
        )



[docs]class RefreshTokenSalesforceStreaming(BaseConnector):
    """
    Create a SF streaming manager with password refresh token connection.

    Main arguments are connection credentials:

    :param refresh_token: Refresh token

    See :class:`.BaseConnector` for other keywords arguments.
    """

    def __init__(self, *, refresh_token: str = None, **kwargs):
        if refresh_token is None:
            raise TypeError("All credentials arguments are mandatory")

        super().__init__(**kwargs)
        # Credentials used to fetch access token
        self.credentials.update(
            {"grant_type": "refresh_token", "refresh_token": refresh_token}
        )





            

          

      

      

    

  

    
      
          
            
  Source code for aio_sf_streaming.core

"""
Core module: define the root base class with main logic
"""
import abc
import asyncio
import copy
import logging
from typing import Any, Dict, List, Optional, Tuple, Union

import aiohttp

logger = logging.getLogger("aio_sf_streaming")

# Typing utils
JSONObject = Dict[str, Any]
JSONList = List[JSONObject]
JSONType = Union[JSONObject, JSONList]


[docs]class BaseSalesforceStreaming(abc.ABC):
    """
    Base low-level *aio-sf-streaming* class.

    Can not be used directly: must be sub-classed with at least one connector
    implementation. The class provide basic functionalities. Additional
    functionalities can be added with provided mixins.

    The main logic is implemented here but you should not use it directly.

    :param sandbox: If ``True``, the connexion will be made on a sandbox,
        from ``https://test.salesforce.com`` instead of the main login
        route at ``https://login.salesforce.com``.
    :param version: The API version to use. For example ``'42.0'``.
    :param loop: Asyncio loop used
    :param connector: ``aiohttp`` connector used for main session. Mainly used
        for test purpose.

    This class supports the context manager protocol for self closing.

    All main members are coroutine, even if default implementation does do any
    asynchronous call. With this convention, sub classes and mixins can easily
    override this members and do complex call.

    See :py:class:`SimpleSalesforceStreaming` for an usage example.
    """

    version: str  #: SF api version to use
    sandbox: bool  #: Use test server
    connector: aiohttp.BaseConnector  #: aiohttp connector for main session
    instance_url: Optional[str]  #: Instance url (retrieved with token)
    session: Optional[aiohttp.ClientSession]  #: Underlying connection
    client_id: Optional[str]  #: The client id token from handshake
    message_count: int  #: Message id count
    timeout: int  #: Timeout connection duration
    should_stop: bool  #: Set to True to stop streaming

    #: Header used in all requests
    base_header: dict = {"Accept": "application/json"}

    def __init__(
        self,
        *,
        sandbox: bool = False,
        version: str = "42.0",
        loop: asyncio.AbstractEventLoop = None,
        connector: aiohttp.BaseConnector = None,
    ) -> None:
        self.version = version
        self.sandbox = sandbox
        self._loop = loop
        self.connector = connector
        self.instance_url = None
        self.session = None
        self.client_id = None
        self.message_count = 0
        self.timeout = 120
        self.should_stop = False
        super().__init__()

    # -------------------- High level api --------------------

[docs]    async def start(self) -> None:
        """
        Connect to Salesforce, authenticate and init CometD connexion.

        A best practice is to use async context manager interface that will
        call this method directly.
        """
        self.session = await self.create_connected_session()
        await self.handshake()


[docs]    async def subscribe(self, channel: str) -> JSONList:
        """
        Subscribe to a channel. Can be used directly::

            await client.subscribe('/topic/Foo')

        This method, and the underlying protocol, are safe to be started as
        an background task::

            loop.create_task(client.subscribe('/topic/Foo'))

        """
        response = await self.send(await self.get_subscribe_payload(channel))
        logger.info("Subscribe response: %r", response)
        return response


[docs]    async def messages(self) -> JSONObject:
        """
        Asynchronous generator that fetch new messages and return one as soon
        as one is available::

            async for message in client.messages():
                channel = message['channel']
                print(channel, ':', message)

        This method iterate over **all** messages, even on internal/meta one.
        If you want to only iterate over messages from channels you subscribed,
        you should use :py:func:`BaseSalesforceStreaming.events`.

        .. warning::
            Linked to the underlying protocol, long-pooling based, the client
            should reconnect as soon as possible. Practically, client have 40
            seconds to reconnect. If your processing take a longer time, a new
            connection should be made. You should avoid doing long processing
            between each iteration or launch this processing into a background
            task.

        """
        while True:
            if self.should_stop:
                return
            try:
                response = await self.send(
                    {"channel": "/meta/connect", "connectionType": "long-polling"}
                )
            except asyncio.TimeoutError:
                logger.info("Timeout")
                continue
            except aiohttp.ClientResponseError as error:
                if error.code == 408:
                    # Timeout
                    logger.info("Timeout")
                    continue
                else:
                    raise

            if self.should_stop:
                return

            logger.debug("Messages: received %r", response)
            for message in response:
                if self.should_stop:
                    return
                yield message


[docs]    async def events(self) -> JSONObject:
        """
        Asynchronous generator that fetch new events and return one as soon
        as one is available::

            async for message in client.events():
                channel = message['channel']
                print(channel, ':', message)

        This method is different from :py:func:`BaseSalesforceStreaming.messages`
        because it filter messages and provide only those related to the
        channels you subscribed.
        """
        async for message in self.messages():
            if not message.get("channel", "").startswith("/meta/"):
                yield message


[docs]    async def ask_stop(self) -> None:
        """
        Ask client to stop receiving event::

            async for event in client.events():
                ...
                if ...:
                    await client.ask_stop()

        This call will eventually stop
        :py:func:`BaseSalesforceStreaming.messages` and
        :py:func:`BaseSalesforceStreaming.events` async generator but this can
        take some time if not called inside the loop body: the generator will
        wait a timeout response from Salesforce server.
        """
        self.should_stop = True


[docs]    async def unsubscribe(self, channel: str) -> JSONList:
        """
        Unsubscribe to a channel. Can be used directly::

            await client.unsubscribe('/topic/Foo')

        This method, and the underlying protocol, are safe to be started as
        an background task::

            loop.create_task(client.unsubscribe('/topic/Foo'))

        """
        response = await self.send(await self.get_unsubscribe_payload(channel))
        logger.info("Unsubscribe response: %r", response)
        return response


[docs]    async def stop(self) -> None:
        """
        Disconnect to Salesforce and close underlying connection.

        A best practice is to use async context manager interface that will
        call this method directly.
        """
        await self.ask_stop()
        await self.disconnect()
        await self.close_session()


    # -------------------- Connection logic --------------------

    @property
    def token_url(self) -> str:
        """
        The url that should be used to fetch an access token.
        """
        url_prefix = "test" if self.sandbox else "login"
        return f"https://{url_prefix}.salesforce.com/services/oauth2/token"

[docs]    @abc.abstractmethod
    async def fetch_token(self) -> Tuple[str, str]:
        """
        Abstract coroutine method of connector that must provide an access
        token and the instance url linked.
        """


[docs]    async def create_connected_session(self) -> aiohttp.ClientSession:
        """
        This coroutine create an ``aiohttp.ClientSession`` using fetched token
        """
        token, self.instance_url = await self.fetch_token()

        base_header = copy.deepcopy(self.base_header)
        base_header.update({"Authorization": f"Bearer {token}"})

        session = aiohttp.ClientSession(
            connector=self.connector, headers=base_header, loop=self.loop
        )
        return session


[docs]    async def close_session(self) -> None:
        """
        Close the underlying ``aiohttp.ClientSession`` connection
        """
        if self.session is None:
            return
        await self.session.close()
        self.session = None


    # -------------------- Bayeux/CometD logic layer --------------------

    @property
    def end_point(self) -> str:
        """
        Cometd endpoint
        """
        return f"/cometd/{self.version}/"

[docs]    async def get_handshake_payload(self) -> JSONObject:
        """
        Provide the handshake payload
        """
        return {
            "channel": "/meta/handshake",
            "supportedConnectionTypes": ["long-polling"],
            "version": "1.0",
            "minimumVersion": "1.0",
        }


[docs]    async def get_subscribe_payload(self, channel: str) -> JSONObject:
        """
        Provide the subscription payload for a specific channel
        """
        return {"channel": "/meta/subscribe", "subscription": channel}


[docs]    async def get_unsubscribe_payload(self, channel: str) -> JSONObject:
        """
        Provide the unsubscription payload for a specific channel
        """
        return {"channel": "/meta/unsubscribe", "subscription": channel}


[docs]    async def send(self, data: JSONObject) -> JSONType:
        """
        Send data to CometD server when the connection is established::

            # Manually disconnect
            await client.send({'channel': '/meta/disconnect'})

        """
        self.message_count += 1

        # Add  id and client_id to payload
        data = copy.copy(data)
        data["id"] = str(self.message_count)
        if self.client_id:
            data["clientId"] = self.client_id

        # Post data
        return await self.post(self.end_point, json=data)


[docs]    async def handshake(self) -> JSONList:
        """
        Coroutine that perform an handshake (mandatory before any other action)
        """
        self.message_count = 0

        response = await self.send(await self.get_handshake_payload())
        logger.info("Handshake response: %r", response)
        self.client_id = response[0]["clientId"]

        return response


[docs]    async def disconnect(self) -> JSONList:
        """
        Disconnect from the SF streaming server
        """
        return await self.send({"channel": "/meta/disconnect"})


    # -------------------- IO layer helpers --------------------

[docs]    async def get(self, sub_url: str, **kwargs) -> JSONType:
        """
        Perform a simple json get request from an internal url::

            response = await.client.get('/myendpoint/')

        """
        return await self.request("get", sub_url, **kwargs)


[docs]    async def post(self, sub_url: str, **kwargs) -> JSONType:
        """
        Perform a simple json post request from an internal url::

            response = await.client.post('/myendpoint/', json={'data': 'foo'})

        """
        return await self.request("post", sub_url, **kwargs)


[docs]    async def request(self, method: str, sub_url: str, **kwargs) -> JSONType:
        """
        Perform a simple json request from an internal url
        """
        url = f"{self.instance_url}{sub_url}"
        logger.debug("Perform %r to %r with %r", method, url, kwargs)

        async with self.session.request(
            method, url, timeout=self.timeout, **kwargs
        ) as resp:
            resp.raise_for_status()
            data = await resp.json()

        return data


    # -------------------- SPECIALS METHODS -------------------- #

    @property
    def loop(self) -> asyncio.AbstractEventLoop:
        """
        Running event loop
        """
        if self._loop is None:
            self._loop = asyncio.get_event_loop()
        return self._loop

    # Asynchronous context manager

    async def __aenter__(self):
        await self.start()
        return self

    async def __aexit__(self, exc_type, exc, tb):
        await self.stop()





            

          

      

      

    

  

    
      
          
            
  Source code for aio_sf_streaming.mixins

"""
Mixins module: Provide various mixins modules
"""
import asyncio
import enum
import logging
from typing import Union

from .core import JSONList, JSONObject

logger = logging.getLogger("aio_sf_streaming")


class ConnectionError(Exception):
    ...


[docs]class TimeoutAdviceMixin:
    """
    Simple mixin that automatically set timeout setting according to SF
    advice, if provided.
    """

    async def messages(self) -> JSONObject:
        """
        See :py:func:`BaseSalesforceStreaming.messages`
        """
        async for message in super().messages():
            if message.get("channel", "") == "/meta/connect" and "advice" in message:
                timeout_advice = message["advice"].get("timeout", None)
                if timeout_advice:
                    self.timeout = timeout_advice / 1000
            yield message



[docs]class ReplayType(enum.Enum):
    """
    Enumeration with special replay values
    """

    ALL_EVENTS = -2  #: Replay all events available.
    NEW_EVENTS = -1  #: No replay, retrieve only new events.



[docs]class ReplayMixin:
    """
    Mixing adding replay support to the streaming client.

    This mixin is not enough, you must implement :py:func:`ReplayMixin.store_replay_id` and
    `:py:func:`ReplayMixin.get_last_replay_id` in a subclass in order to have a working replay.
    """

    async def get_handshake_payload(self) -> JSONObject:
        """
        See :py:func:`BaseSalesforceStreaming.get_handshake_payload`
        """
        payload = await super().get_handshake_payload()
        # Activate replay extension
        payload.setdefault("ext", {}).update({"replay": True})
        return payload

    async def get_subscribe_payload(self, channel: str) -> JSONObject:
        """
        See :py:func:`BaseSalesforceStreaming.get_subscribe_payload`
        """
        payload = await super().get_subscribe_payload(channel)

        # Call inner callback to retrieve the last replay id
        replay_id = await self.get_last_replay_id(channel)

        # No response => Use only new events (default behavior)
        if not replay_id:
            replay_id = ReplayType.NEW_EVENTS

        # Extract replay value
        if isinstance(replay_id, ReplayType):
            replay_id = replay_id.value
        replay_id = int(replay_id)

        # Update payload
        payload.setdefault("ext", {}).setdefault("replay", {})
        payload["ext"]["replay"][channel] = replay_id

        return payload

    async def messages(self) -> JSONObject:
        """
        See :py:func:`BaseSalesforceStreaming.messages`
        """
        async for message in super().messages():
            channel = message["channel"]

            # On new message, call callback to store replay id
            if not channel.startswith("/meta/"):
                event = message["data"]["event"]
                replay_id = event["replayId"]
                creation_time = event["createdDate"]

                # Create a task : do not wait the replay id is stored to
                # reconnect as soon as possible
                self.loop.create_task(
                    self.store_replay_id(channel, replay_id, creation_time)
                )
            yield message

[docs]    async def store_replay_id(
        self, channel: str, replay_id: int, creation_time: str
    ) -> None:
        """
        Callback called to store a replay id. You should override this method
        to implement your custom logic.

        :param channel: Channel name
        :param replay_id: replay id to store
        :param creation_time: Creation time. You should store only the last
            created object but you can not know if you received event in order
            without this. This value is the string provided by SF.
        """


[docs]    async def get_last_replay_id(self, channel: str) -> Union[ReplayType, int]:
        """
        Callback called to retrieve a replay id. You should override this method
        to implement your custom logic.

        :param channel: Channel name
        """




[docs]class AutoVersionMixin:
    """
    Simple mixin that fetch last api version before connect.
    """

    async def handshake(self) -> JSONList:
        """
        See :py:func:`BaseSalesforceStreaming.handshake`
        """
        # Get last api version
        data = await self.get("/services/data/")
        try:
            self.version = data[-1]["version"]
        except (IndexError, KeyError):
            pass
        logger.info("API version used: %r", self.version)

        return await super().handshake()



[docs]class AutoReconnectMixin:
    """
    Mixin that will automatically reconnect when asked by Salesforce
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Used to store all subscribed channels
        self._subchannels = None

    async def start(self) -> None:
        """
        See :py:func:`BaseSalesforceStreaming.start`
        """
        self._subchannels = set()
        await super().start()

    async def subscribe(self, channel: str) -> JSONList:
        """
        See :py:func:`BaseSalesforceStreaming.subscribe`
        """
        self._subchannels.add(channel)
        return await super().subscribe(channel)

    async def messages(self) -> JSONObject:
        """
        See :py:func:`BaseSalesforceStreaming.messages`
        """
        async for message in super().messages():
            channel = message["channel"]

            # If asked, perform a new handshake
            if (
                channel.startswith("/meta/")
                and message.get("error") == "403::Unknown client"
            ):
                # Need to re-subscribes, not possible with current design, let crash
                raise ConnectionError()
                # logger.info("Disconnected, do new handshake")
                # await self.handshake()
                # continue

            yield message

    async def unsubscribe(self, channel: str) -> JSONList:
        """
        See :py:func:`BaseSalesforceStreaming.unsubscribe`
        """
        self._subchannels.remove(channel)
        return await super().unsubscribe(channel)

    async def stop(self) -> None:
        """
        See :py:func:`BaseSalesforceStreaming.stop`
        """
        await super().stop()
        self._subchannels = None

    async def handshake(self) -> JSONList:
        """
        See :py:func:`BaseSalesforceStreaming.handshake`
        """
        response = await super().handshake()

        # If we reconnect, we must re-subscribe to all channels
        for channel in self._subchannels:
            self.loop.create_task(super().subscribe(channel))

        return response



[docs]class ReSubscribeMixin:
    """
    Mixin that handle subscription error, will try again after a short delay

    :param retry_sub_duration: Duration between subscribe retry if server is
        too buzy (initial value).
    :param retry_factor: Factor amplification between each successive retry
    :param retry_max_duration: Maximum value of the retry duration
    :param retry_max_count: Maximum count of retry, after this count is reach,
        response or exception are propagated.
    """

    def __init__(
        self,
        retry_sub_duration: float = 0.1,
        retry_factor: float = 1.0,
        retry_max_duration: float = 30.0,
        retry_max_count: int = 20,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.retry_sub_duration = retry_sub_duration
        self.retry_factor = retry_factor
        self.retry_max_duration = retry_max_duration
        self.retry_max_count = retry_max_count
        self.retry_current_duration = {}
        self.retry_current_count = {}

[docs]    async def should_retry_on_exception(
        self, channel: str, exception: Exception
    ) -> bool:
        """
        Callback called to process an exception raised during subscription.
        Return a boolean if we must retry. If ``False`` is returned, the exception will be
        propagated to caller.

        By-default, do return always ``False``.

        :param channel: Channel name
        :param exception: The exception raised
        """
        return False


[docs]    async def should_retry_on_error_response(
        self, channel: str, response: JSONObject
    ) -> bool:
        """
        Callback called to process a response with and error message.
        Return a boolean if we must retry. If ``False`` is returned, the response will be
        returned to caller.

        By-default, retry on known 'server unavailable' response.

        :param channel: Channel name
        :param response: The response received
        """
        failure = response[0].get("ext", {}).get("sfdc", {}).get("failureReason", "")
        return failure.startswith("SERVER_UNAVAILABLE") or failure.startswith(
            "503::Server is too busy"
        )


    def _update_retry_count(self, channel: str) -> bool:
        """
        Update retry count for the channel. Return a boolean if we should retry
        """
        self.retry_current_count[channel] = self.retry_current_count.get(channel, 0) + 1
        if self.retry_current_count[channel] >= self.retry_max_count:
            return False
        duration = self.retry_current_duration.get(channel, -1)
        if duration < 0:
            duration = self.retry_sub_duration
        else:
            duration = min(duration * self.retry_factor, self.retry_max_count)
        self.retry_current_duration[channel] = duration
        return True

    async def subscribe(self, channel: str) -> JSONList:
        """
        See :py:func:`BaseSalesforceStreaming.subscribe`
        """
        while True:
            try:
                response = await super().subscribe(channel)
            except Exception as e:
                should_retry = await self.should_retry_on_exception(channel, e)
                if should_retry:
                    should_retry = self._update_retry_count(channel)
                if not should_retry:
                    raise
            else:
                if response and response[0]["successful"]:
                    should_retry = False
                else:
                    should_retry = await self.should_retry_on_error_response(
                        channel, response
                    )
                    if should_retry:
                        should_retry = self._update_retry_count(channel)

            if not should_retry:
                self.retry_current_duration[channel] = -1
                self.retry_current_count[channel] = 0
                return response

            await asyncio.sleep(self.retry_current_duration[channel])



[docs]class AllMixin(
    TimeoutAdviceMixin,  # Use SF timeout advice
    AutoVersionMixin,  # Auto-fetch last api version
    ReplayMixin,  # Add replay support
    AutoReconnectMixin,  # Add auto-reconnection feature
    ReSubscribeMixin,
):  # Handle subscription errors
    """
    Helper class to add all mixin with one class
    """





            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to aio-sf-streaming’s documentation!
        


        		
          Introduction
          
            		
              License
            


          


        


        		
          Quickstart
          
            		
              Code organization
            


            		
              Asyncronous and Asyncio
            


            		
              Salesforce connection
            


            		
              Subscribe to events
            


            		
              Receive events
            


            		
              Replay support
            


          


        


        		
          Developer Interface
          
            		
              Code organization
            


            		
              Main Interface
            


            		
              Base class
            


            		
              Connectors
            


            		
              Mixins
            


          


        


        		
          Release notes
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





